

Queensland Digital Health Centre

2024 Symposium

7 November 2024 Customs House, Brisbane

Expert Panel

The use of real-world data for research

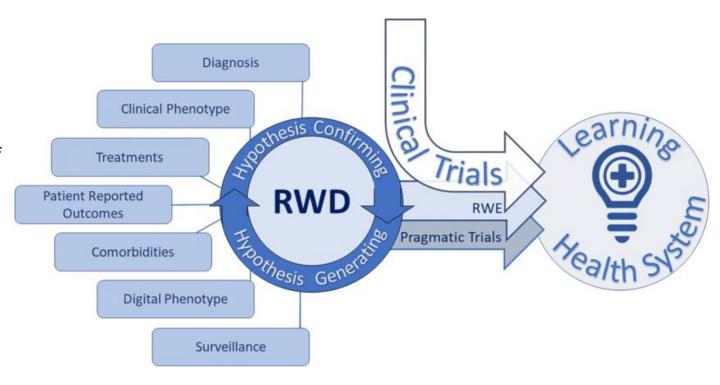
Dr Jodie Austin

Benjamin Reid

Dr Anton van der Vegt

Keren Pointon

Dr David Hansen


Moderator: Prof Jason Pole

Real-world data for healthcare research

What is real-world data (RWD)?

- Collected as part of routine care in real-time using digital health infrastructure
- Renewed interest in RWD for healthcare research has coincided with rapid expansion of health information technology
- Modern day research can use findings generated through RCTs and RWD to bridge evidence gaps
 - RCTs: efficacy under controlled settings
 - RWD: effectiveness under 'real-world' conditions

Snyder J, Pawloski J, Poisson L. Developing real-world evidence-ready datasets: time for clinician engagement. Current Oncology Reports 2020;22. DOI: 10.1007/s11912-020-00904-z

Expert Panel

The use of real-world data for research

Dr Jodie Austin

Benjamin Reid

Dr Anton van der Vegt

Keren Pointon

Dr David Hansen

Moderator: Prof Jason Pole

Leading Excellence in Digital Health in Queensland

Presenters:

Samantha Robertson

Graeme Mattison

Alan Robertson

Moderated by Dr Rebekah Eden Closing remarks by Michael Draheim

Implementation and evaluation of a clinician-led stroke Electronic Medical Record (EMR) enhancement

QDHeC Symposium 07/11/2024 – Project 0083

Samantha Robertson

BSc Nutr&Diet (Hons), CHIA, PhD Candidate
School of Health and Rehabilitation Sciences

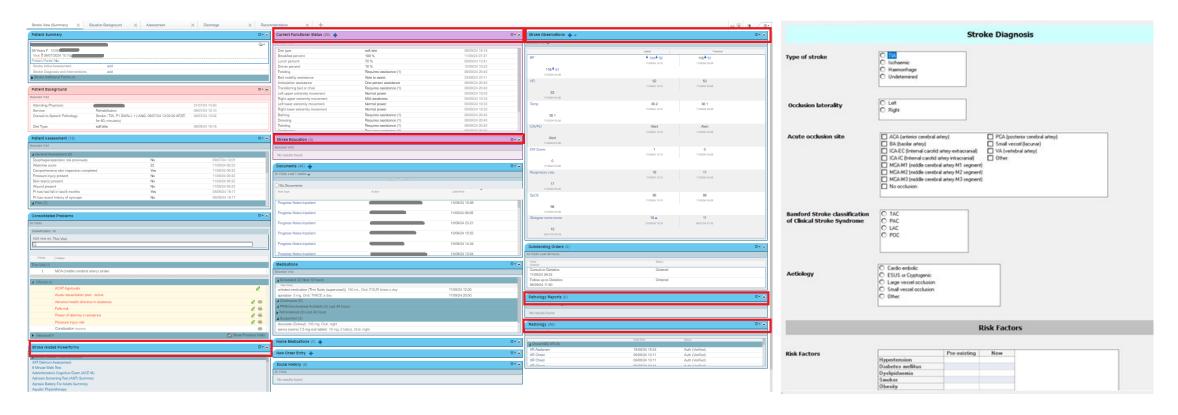
Introduction

Electronic Medical Records (EMRs) are being implemented across health organisations worldwide

Implementation and adoption of digital health technology is complex

Optimisations to EMRs are taking place to enhance adoption, acceptance and use of these systems

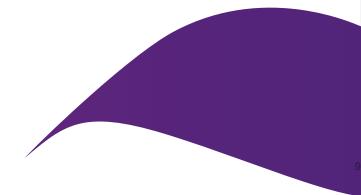
The Queensland Stroke Clinical Network (QSCN) in collaboration with Queensland Health developed a novel customisation to the EMR for stroke care

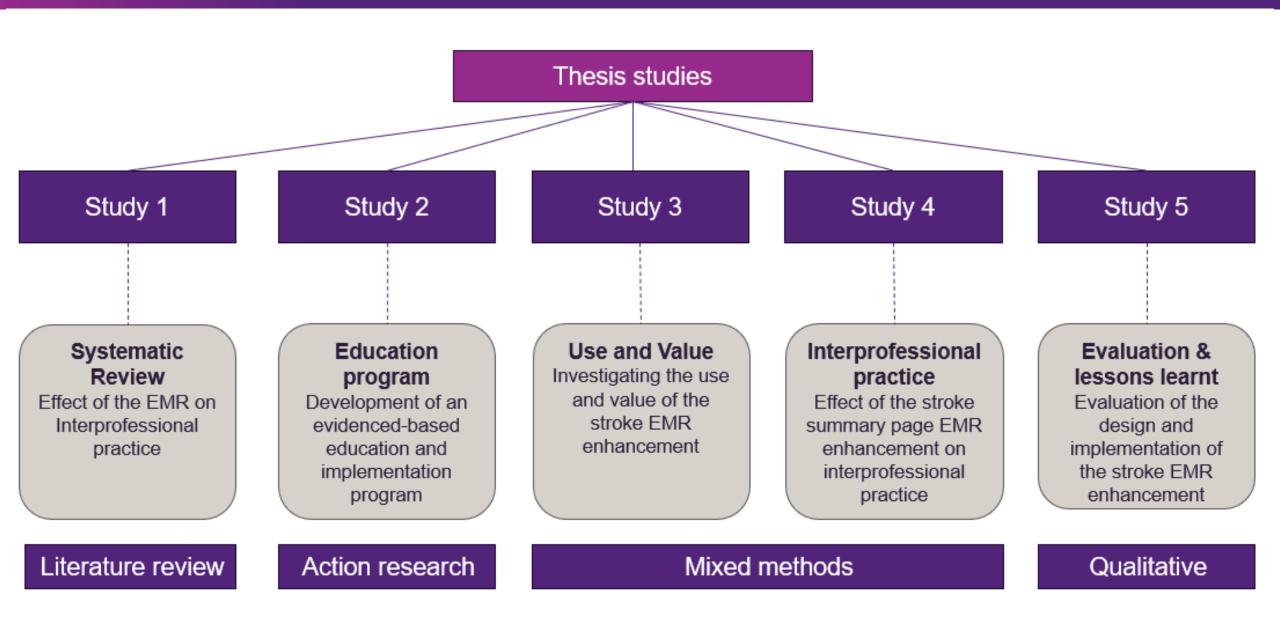


THE UNIVERSITY OF QUEENSLAND

Stroke EMR Enhancement

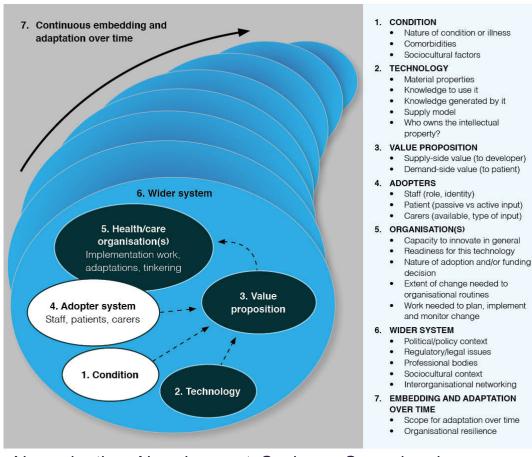
Summary Page: Improve interprofessional practice through enhanced visibility of information and communication and coordination of patient care


Data collection forms: Improve data collection and extraction practices for upload to the Australian Stroke Clinical Registry (AuSCR)



Research Question

"What is the use, perceived value and impact of an EMR enhancement for stroke on interprofessional practice and efficiency of data extraction, and what are the experiences of clinicians and stakeholders in its design and implementation?"



Methodology

Complexity science approach

Non-adoption, Abandonment, Scale-up, Spread and Sustainability (NASSS) framework

Setting

Site 1: Metropolitan teaching hospital with 1050-beds

Site 2: Tertiary teaching hospital with a 707-beds

Site 3: Metropolitan teaching hospital with 906-beds

Site 4: Regional hospital with 318-beds

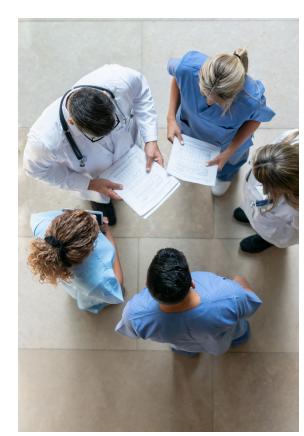
Participants

Medical, nursing, allied health end-users across study sites Key stakeholders involved in design and implementation

Data collection

- Observational shadowing (4 sites, 16 staff, 53 hours)
- Semi-structured interviews (23 stakeholders and end users)
- Usage log EMR data
- Pre-post survey (4 sites, 124 participants)

Results


- EMR enhancements have the **potential to improve interprofessional practice**, particularly through improved communication and coordination of patient care. Enhancements had a greater positive effect than the EMR alone.
 - An evidenced-based, theory driven education and **implementation program** was employed to provide the opportunity for optimal adoption and utilisation of the stroke EMR enhancement.
 - There were mixed and varied results on the use and value of the stroke EMR enhancement. Results showed that clinicians did not always use the enhancement in line with its intended design.
 - Introduction of a summary page within the EMR had **no effect on interprofessional practice** within stroke MDTs.
- Reasons for **non-adoption** were described as: 1) Complexity of the design and context, 2) Disconnection between frontline clinicians and clinical leadership, 3) EMR functionality limitations, 4) Resource constraints

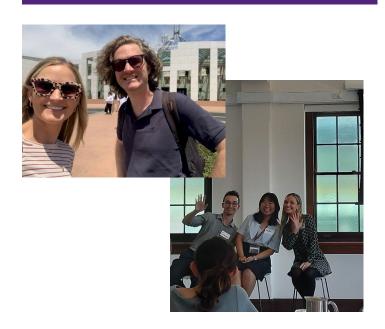
Lessons

- Digital change extends beyond technology; it involves implementation, change management and leadership
- Understanding complexity of the health system.
 Acknowledging and managing complexity requires a transdisciplinary approach
- End-user involvement in the design and evaluation of digital interventions is crucial (sustaining clinician engagement in user-centered design)
- A shared language is essential for successful design implementation
- Considering EMR technology functionality

Thank you

Ms Samantha Robertson School of Health and Rehabilitation Sciences Samantha.Robertson@uq.edu.au

f


facebook.com/uniofqld

Instagram.com/uniofqld

@SamTRobertson1

Published

Robertson, S. T., Brauer, S. G., Burton-Jones, A., Grimley, R. S., & Rosbergen, I. C. M. (2024). From use, value and user-centered design to context: A mixed methods analysis of a hospital electronic medical record enhancement. *DIGITAL HEALTH*, 10, 20552076241279208. https://doi.org/10.1177/20552076241279208

Robertson, S. T., Rosbergen, I. C. M., Brauer, S. G., Grimley, R. S., & Burton-Jones, A. (2023). Addressing complexity when developing an education program for the implementation of a stroke Electronic Medical Record (EMR) enhancement. *BMC Health Services Research*, 23(1), 1301. https://doi.org/10.1186/s12913-023-10314-z

Robertson, S. T., Rosbergen, I. C., Burton-Jones, A., Grimley, R. S., & Brauer, S. G. (2022). The effect of the electronic health record on interprofessional practice: a systematic review. *Applied Clinical Informatics, 13(03), 541-559. https://doi.org/The effect of the electronic health record on interprofessional practice: a systematic review*

Robertson, S.T., Grimley, R.S., Burton-Jones, A., Rosbergen, I.C.M., Brauer, S.G. (2021, October 13–15). The impact of a clinically-led electronic medical record (EMR) enhancement in stroke: Research Protocol. [Poster presentation]. Proceedings from the Stroke Society of Australasia Annual Scientific Meeting, Perth, Australia. *International Journal of Stroke, 16*(1_suppl), 3-34.

Drafted/Submitted

Robertson, S.T., Brauer, S.G., Rosbergen, I.C.M., Burton-Jones, A., Grimley, R.S. (2024). *The effect of a digital EMR communication tool on interprofessional practice in acute stroke care*. [Manuscript submitted for publication]. School of Health and Rehabilitation Sciences, University of Queensland.

Robertson, S.T., Rosbergen, I.C.M., Burton-Jones, A., Grimley, R.S, Brauer, S.G. (2024). How can we design, implement and sustain clinician-led enhancements to the EMR: lessons learned through non-adoption. [Manuscript submitted for publication]. School of Health and Rehabilitation Sciences, University of Queensland.

Acknowledgements

Professor Sandy Brauer

Professor Andrew Burton-Jones

Dr Ingrid Rosbergen

Head of School

School of Health and Rehabilitation

Sciences, UQ

Professor

School of Business, UQ

Lecturer and Researcher

University of Leiden, Netherlands

Professor Rohan Grimley

Stroke Consultant, Research Director

Sunshine Coast University Hospital

Collaborators

Queensland Stroke Clinical Network (QSCN)

Office of the Chief Information Officer (OCCIO)

Queensland Health participating hospital sites

and clinicians

Thank you

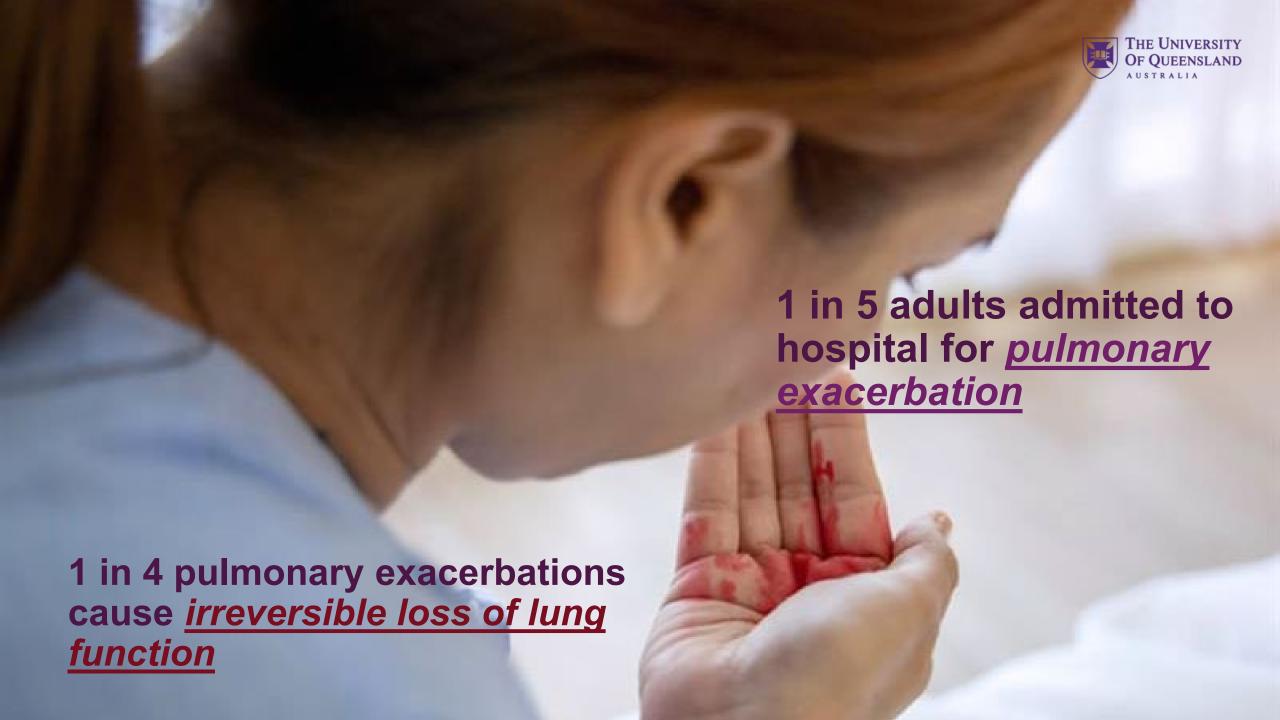
Samantha Robertson

PhD Candidate, Senior Clinical Dietitian samantha.robertson@uq.edu.au

CRICOS 00025B • TEQSA PRV12080

Heart Rate Variability – An early biomarker of cystic fibrosis exacerbation

PhD: Integrating Wearable Devices into the Patient Centred Digital Healthcare Environment


Supported by UQ-DHCRC Project 0083

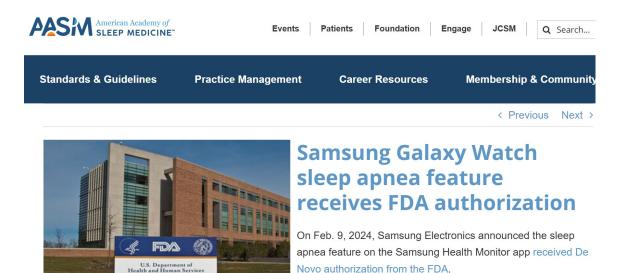
Dr Graeme Mattison

MBChB MRCP(UK) MSc PhD

Respiratory Advanced Trainee & DHCRC PhD Scholarship Recipient

Diagnostic Criteria for Pulmonary Exacerbation of Cystic Fibrosis Digital Health Centre

Definition	Criteria to Define a PEx	Detail		
EuroCareCF, 2011 ⁶	When additional antibiotics are needed due to a recent change in at least 2 items from a predefined list	Change in sputum volume or color; increased cough; increased fatigue, malaise, or lethargy; anorexia or weight loss; increased shortness of breath; decrease in pulmonary function by $\geq 10\%$ compared with previous or radiographic changes consistent with a		
Rabin et al, ⁷ 2004	Three or m I think I need antibiotics for my col	": relative decline in FEV ₁ ; ency; new crackles;		
Rosenfeld et al, ⁸ 2001	Combined quantify one usin	cise tolerance; increased um/cough clearance; increased zion; school or work n lung examination; decreased; change in FEV ₁		
Ramsey et al, ⁹ 1999	At least 2 s list and 1	50% increase in cough; m volume; loss of appetite; ibsence from school or work for ding 7 days due to illness; respiratory tract infection of at least 10%; increase in ast 10 breaths/min; peripheral		
Fuchs et al, ⁵ 1994	At least 4 selection list	or increased hemoptysis; ased shortness of breath; gy; temperature > 38°C; s; sinus pain or tenderness; change in sinus discharge; change in physical examination of the chest; decrease in pulmonary function by ≥ 10% compared with previous; radiographic changes consistent with a pulmonary exacerbation		



Is the solution on our wrists?

1 in 3 Australians own a smartwatch

Smartwatches TGA approved for detecting atrial fibrillation

Recent FDA approval for detecting sleep apnoea

smartwatch I might be DEAD!

If we can continually monitor our health...

...could we use smartwatches to identify changes in physiology that may be suggestive of pulmonary exacerbation in cystic fibrosis?

40 adults with cystic fibrosis

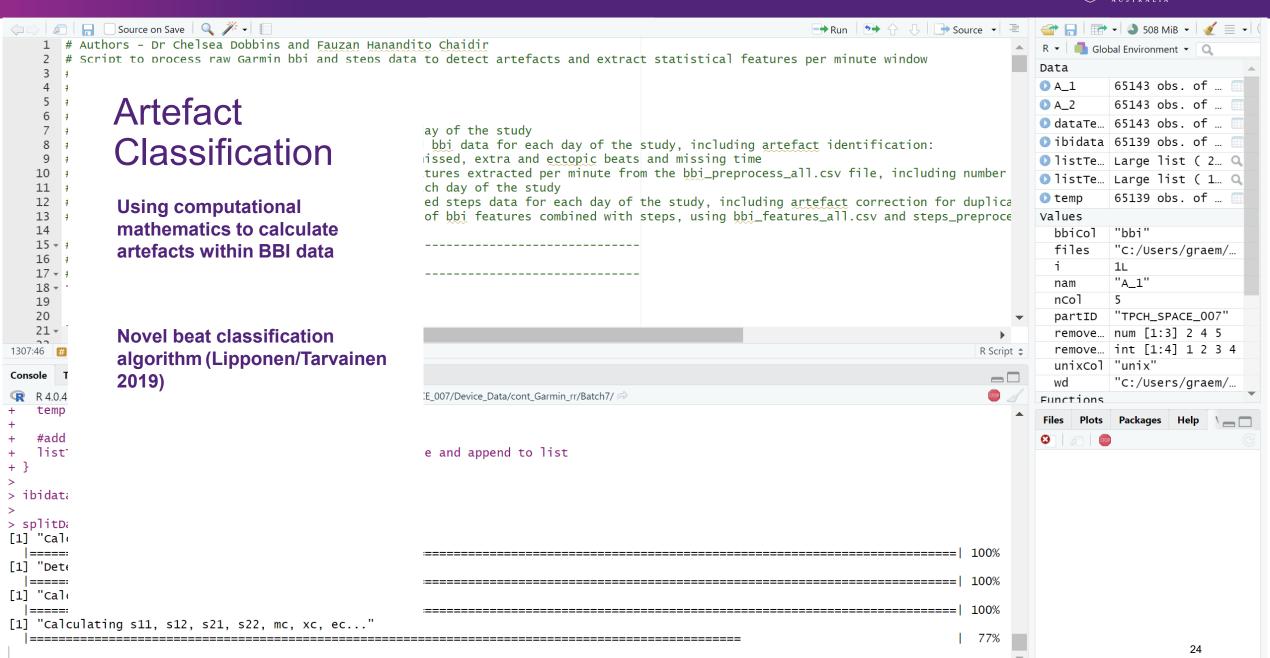
Garmin Vivosmart 4 smartwatch

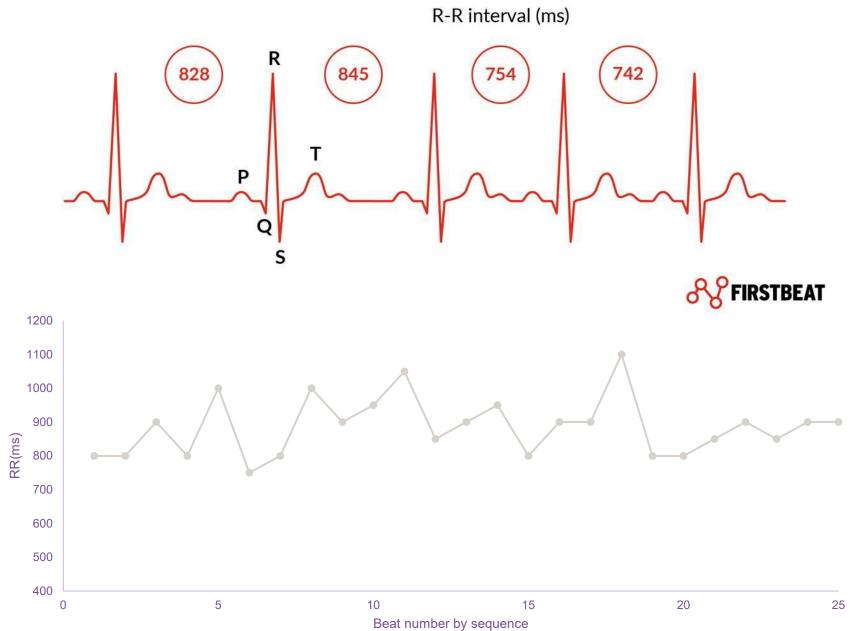
Heart Rate
Step Count
"Stress"
Sleep stage estimation
Beat-to-Beat interval data (to calculate heart rate variability)

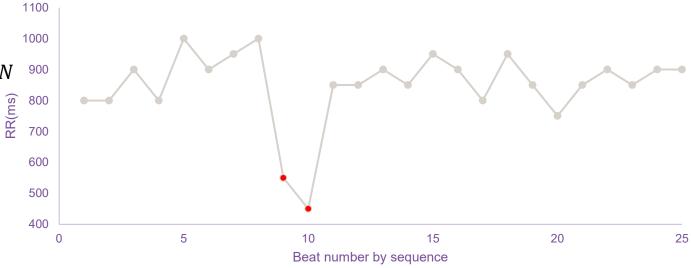
Lung function, logging exacerbations, symptom severity scoring

We got a lot of messy data!

158,722,558 heart beats of it to be precise


WHAT I THOUGHT DATA WOULD LOOK LIKE

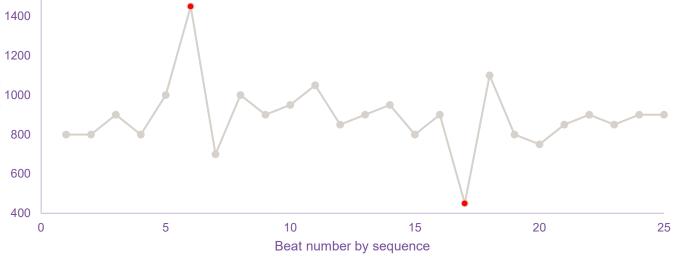

WHAT IT *ACTUALLY* LOOKS LIKE



Extra beat

(1)
$$Th2(j) = \alpha \ QD \ [|mRRs(j-45 ... j+45)|], j = 1 ... N$$

(2) $Extra\ beat = |RR(j) + RR(j+1) - medRR(j)|$ < Th2



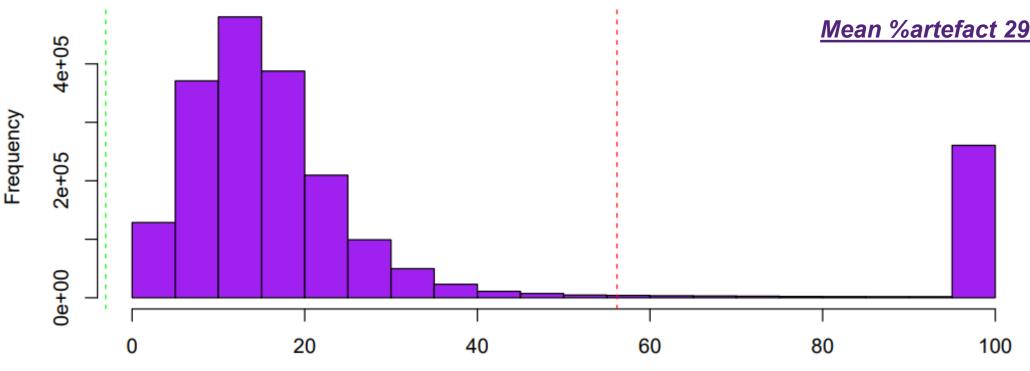
Long/Short beat

$$(1) S_{21} = dRR(j), j = 1 \dots N$$

$$(2) S_{22} = \begin{cases} \min[dRR(j+1), dRR(j+2)], if \ dRR(j) \ge 0 & \text{for } 1000 \\ \max[dRR(j+1), dRR(j+2)], if \ dRR(j) < 0 & \text{for } 1000 \\ 800 & \text{for } 1$$

|mRR>3

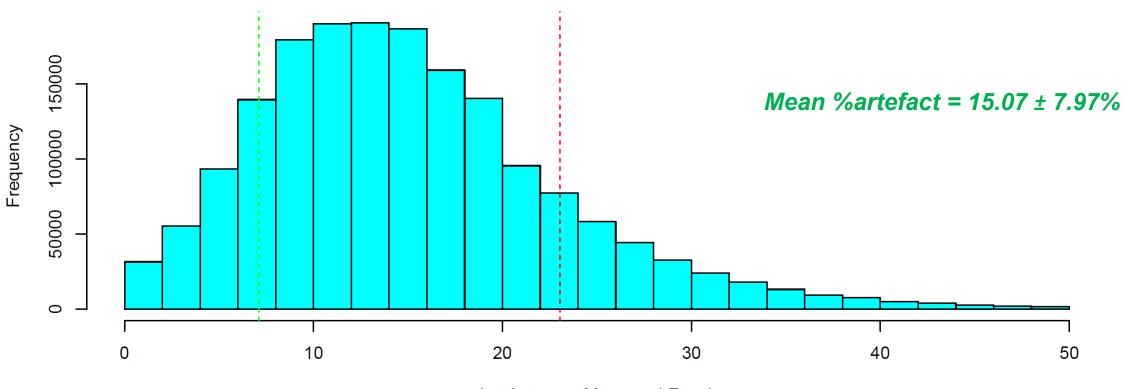
Uncleaned Data Distribution



Histogram with 68% Range

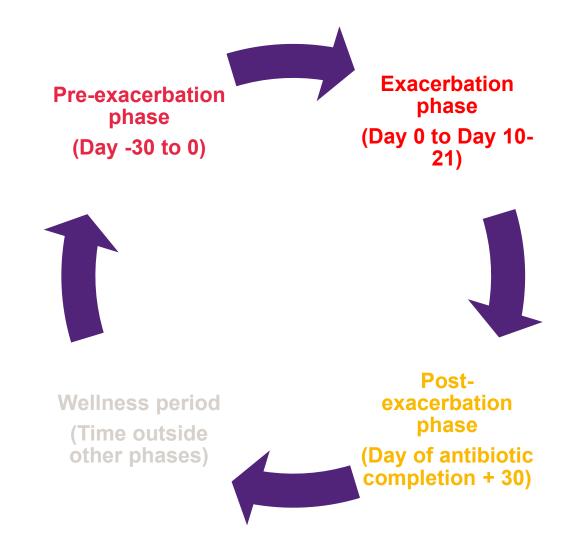
Combined into 2,053,745 60-second epochs

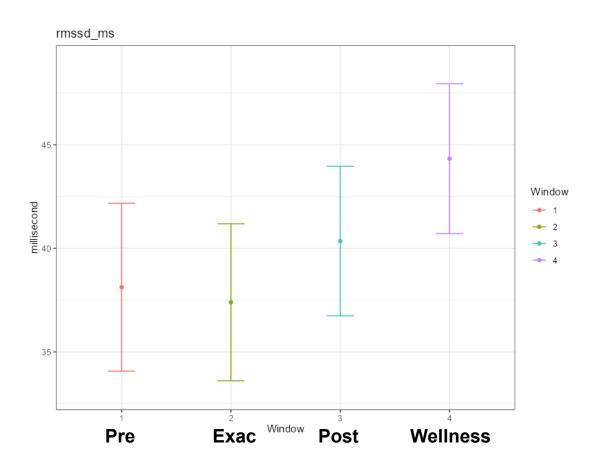
Mean %artefact 29.78 ± 13.58%


Artefacts per 60 second Epoch

Preprocessed Data Distribution

N = 1,762,937 epochs (14.2% data rejection)




AUSTRALIA

Labelling to Exacerbation Phase

Heart Rate Variability is reduced *up to 30 days before* diagnosis of pulmonary exacerbation

Table 20 HRV measured in this study between phases of pulmonary exacerbation using an LME model. RMSSD = root mean square of successive differences

Phase Comparison to wellness	Estimated mean RMSSD (ms)	Estimated mean difference between phases (ms)	SE	95% CI	p-value
Wellness	44.331	0	1.776	40.713 –	NA
(Intercept)	11.551	v		47.949	
Pre	38.123	(-6.208)	1.278	(-8.726) –	<0.001
110				(-3.690)	
Exac	37.399	(-6.932)	1.006	(-8.907) –	<0.001
Lauc				(-4.958)	
Post	40.352	(-3.979)	0.590	(-5.135) –	<0.001
1 051				(-2.823)	

Other positive findings

Awake time during sleep increased during exacerbation compared to wellness (13.4 vs 8.8 mins; p=0.014)

Daily step count reduced during exacerbation compared to wellness (2869 vs 3596 steps/day; p=0.005)

HRV may be an early biomarker of pulmonary exacerbation*

*Research currently under peer-review (*Eur Resp J*)

Acknowledgements

Swelling with pride to be at #DHS2022 in Sydney with our "Purple Brigade" - @UQMedicine @UQ_News emerging transdisciplinary research leaders in digital health

[18]

Spot the RN, Pharm, BioMed, PhD, Econ, CI, AI, APD & MD! (a) @LeannaWoods2016 (a) SamTRobertson1 (a) digihealthcrc

Greatest acknowledgement

To the study participants in this PhD thesis living with cystic fibrosis

Other work from Project 0083

Influence of wearables on healthcare outcomes in chronic disease

Systematic review, JMIR

Roadmap for smartwatch implementation into preventing chronic disease

MJA Perspective

Qualitative analysis of the value of wearables in CF care

Int J Med Inform

Thank you

Dr Graeme Mattison

Respiratory Advanced Trainee – The Mater Hospital Brisbane

PhD Candidate – Queensland Digital Health Centre, The University of Queensland

g.mattison@uq.edu.au@uq.edu.au

CRICOS 00025B • TEQSA PRV12080

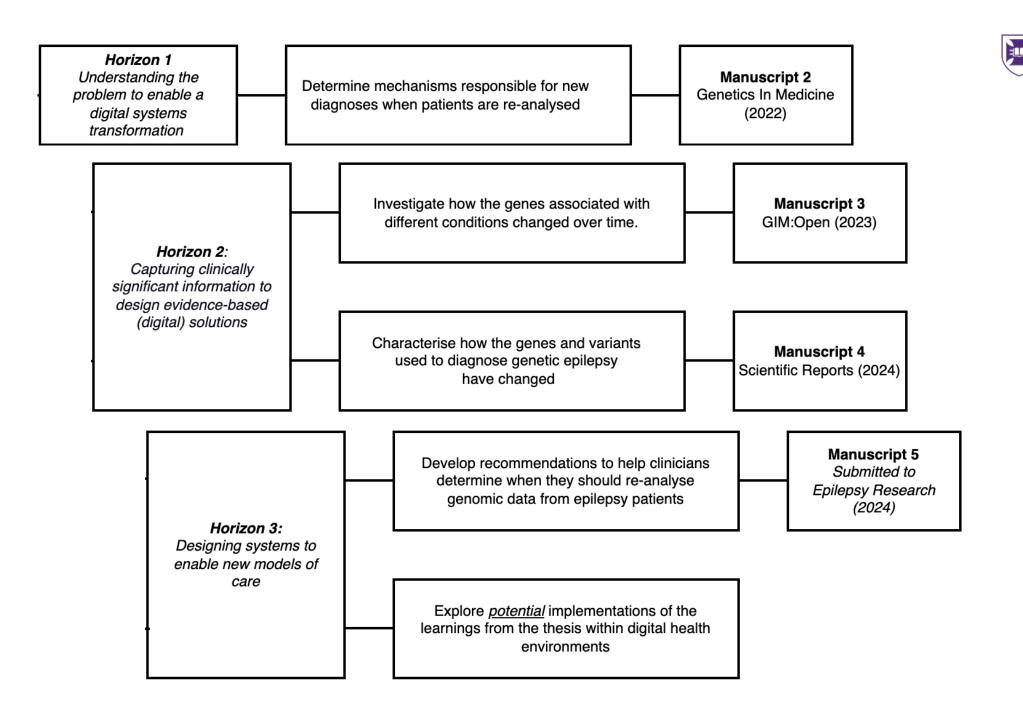
Re-analysing existing genomic data to increase the diagnostic yield of genetic tests

Alan Robertson

PhD Candidate - Queensland Digital Health Centre, The University of Queensland

I acknowledge the Turrbal and Yugara, as the First Nations owners of the lands from which I stand. I pay my respect to their elders, traditions and creation spirits. I recognise that these lands have always been places of teaching, learning, and healing.

Background


Improves

- Diagnosis + Prognosis
- Therapeutics

Genomics

- Genomic data different
 - Remains same, understanding changes
 - Re-analysing existing data

How?

THE UNIVERSITY OF QUEENSLAND

Project Background

Bringing digital excellence to clinical excellence:

Leading digital excellence in Queensland Health

- Focus on student independence
 - Designing project, winning funding, managing project

- Self-directed approach take throughout
 - Fortunate supervisors, cohort of students

Acknowledgements

QIMR Berghofer

Nic Waddell

Olga Kondrashova

Khoa Tran

Amanda Spurdle

Medical Genomics Group

QDHRG
Clair Sullivan
Andrew Burton-Jones
Oliver Canfell
QDHRG Group

VCGS Zornitza Stark University of Queensland Chelsea Dobbins Jason Pole

Digital Health CRC
Melanie Haines
Anna Hutchins
Digital Health CRC PhD Group

Cohort Effect / Tribe Graeme Mattison Sam Robertson Funded by:
Digital Health CRC – DHCRC0083
Industry Partner - Qld Health
Research Partner - UQ
MTPConnect – REDI Fellowship
JSPAAA – Travel Grant

Thank you

Alan Robertson

PhD Candidate – Queensland Digital Health Centre, The University of Queensland

a.robertson2@uq.edu.au

CRICOS 00025B • TEQSA PRV12080

DigiHDR Presentations

Presenters:

Danyang Dai

Hannah O'Connor

Jaze Wang

Monica Noselli

Quita Olsen

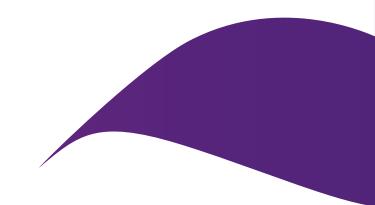
Teyl Engstrom

Titus Kirwa

Tuan Duong

Moderated by Prof Jason Pole
Panel feedback by Prof Clair Sullivan
and Dr David Hansen

Global Geographic and Socio-Economic Disparities in COVID-Associated Acute Kidney Injury (AKI): A Systematic Review and Meta-analysis



Danyang Dai, PhD candidate

Assoc. Prof. Pedro Franca Gois, Digby Simpson, Souhayel Hedfi, Assoc. Prof. Sally Shrapnel, Pro. Jason D Pole

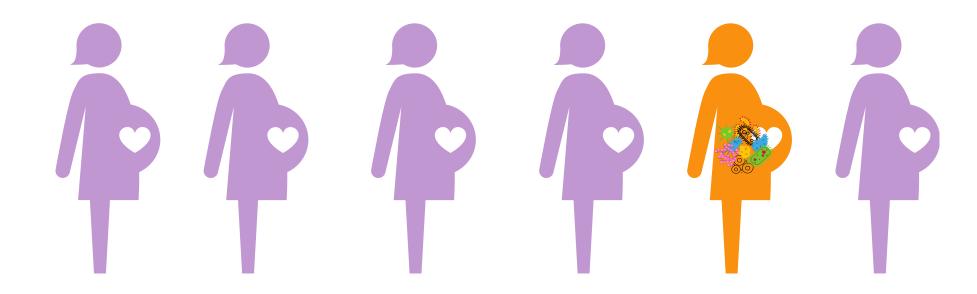
Note: This section has been intentionally omitted at the request of the content owner

Thank you

Danyang Dai

PhD Candidate – Queensland Digital Health Centre, The University of Queensland danyang.dai@uq.net.au

CRICOS 00025B • TEQSA PRV12080


Healthy Gut Diet for preventing gestational diabetes study: A preliminary analysis on participants dietary changes

Hannah O.Connor, PhD candidate

Nina Meloncelli, Shelley Wilkinson, Susan de Jersey

Gestational Diabetes Mellitus (GDM) is the most common condition impacting pregnant woman

No dietary intervention studies have been conducted to investigate the link between the gut microbiota and diet

Randomised Control Trial: The Healthy Gut Diet (HGD)

The aim is to examine if women who adhere to the HGD can avoid GDM

No significant differences at baseline in characteristics or dietary intakes

Randomised

(n=129)

Intervention (n=66)

Control group (n=64)

Mean age of 33 years

64% had a University degree

71% were born in Australia

Average ppBMI was 28 kg/m2)

Significant increases in diet quality, prebiotics and fermented foods

Vegetables

Fiber

Fermented foods

Fruit

Grains (wholegrains)

Non-meat protein

Thank you

Hannah O.Connor

PhD Candidate – Queensland Digital Health Centre, The University of Queensland h.oconnor@uq.edu.au

CRICOS 00025B • TEQSA PRV12080

Digital Health Interventions To Prevent Type 2 Diabetes: A Systematic Review

Wenyang (Jaze) Wang, PhD candidate

Dr Mahnaz Samadbeik, Dr Gaurav Puri. A/Prof Donald McLeod, Dr Elton Lobo, Dr Tuan Duong, Jennifer Nguyen, Mutian Ding, Prof Clair Sullivan

Project 1: Literature Review

Research question: What is the existing evidence regarding digitally-enabled solutions for improving health outcomes related to the Quadruple Aim in outpatient diabetes management?

Hypothesis: There is a diverse range of digitally-enabled solutions in outpatient diabetes management, and these interventions potentially address various aspects of the Quadruple Aim, including enhanced patient experience, improved population health, reduced costs, and improved wellbeing of the healthcare team. The existing literature will likely reveal varied approaches, outcomes, and contexts in the application of these interventions. This scoping review aims to map and characterise this evidence to understand its breadth and depth, identify patterns and gaps, and provide insights for future research.

Aim:

To summarise the current evidence and synthesise knowledge on all digital solutions in outpatient diabetes care and their impact on the Quadruple Aim.

Project 2: Comprehensive Evaluation of ieMR Implementation in Queensland Health's Diabetes Outpatient Settings: A Mixed-Methods Case Study on the Quadruple Aims

Research question: What is the impact of the integrated electronic Medical Records (ieMR) implementation on patient experience, clinician experience, population health outcomes, and costs in Queensland Health's diabetes outpatient settings?

Hypothesis: The integration of ieMR in diabetes outpatient care positively affects patient and clinician experience, while also demonstrating improvements in population health and favourable cost-consequences.

Aim: We seek to provide a comprehensive evaluation of the ieMR implementation in the diabetes outpatient settings within Queensland Health. By adopting a mixed-methods case study approach, we will explore the quadruple aim multifaceted impacts of ieMR on various aspects of healthcare delivery including patient experience, clinician experience, population health outcomes, and costs.

Part 01

Evaluate Patient Experience

- Methods: Surveys
- Analysis: Descriptive analysis of patient experience data
- Expected outcomes: improved patient experience

Part 02

Evaluate Clinician Experience

- Methods: Focus groups
- Analysis: Qualitative analysis of staff experience data
- Expected outcomes: enhanced staff wellbeing

Part 03

Investigate Population Health Effects

- Methods: Collect HbA1c data pre- and post-ieMR implementation
- Analysis: Statistical analysis of HbA1c outcomes
- Expected outcomes: improved HbA1c levels post ieMR implementation

Part 04

Assess Cost-Consequences

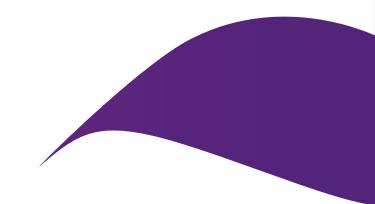
- Methods: Collect costs of ieMR in diabetes outpatient clinic
- Analysis: Cost-consequences analysis
- Expected outcomes: favourable cost-consequences

Thank you

Wenyang (Jaze) Wang

PhD Candidate – Queensland Digital Health Centre, The University of Queensland jaze.wang@uq.edu.au

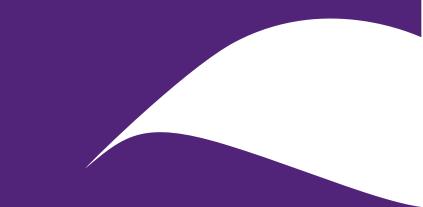
CRICOS 00025B • TEQSA PRV12080


Investigating the presentation of Al information for detecting patient deterioration: ensuring alignment with clinicians' mental models

Monica Noselli, PhD candidate

Anton H van der Vegt, Maxime Cordeil, Ian Scott, Victoria Campbell, Audrey P. Wang

Note: This section has been intentionally omitted



Thank you

Monica Noselli

PhD Candidate – Queensland Digital Health Centre, The University of Queensland m.noselli@uq.edu.au

CRICOS 00025B • TEQSA PRV12080

The public's willingness to share health information for secondary purposes: A systematic review and meta-analysis

Quita Olsen

Dr Leanna Woods, Dr Amalie Dyda, Dr Rebekah Eden, Dr Elton Lobo, Assoc Prof Bernadette Richards, Dr Michelle Krahe, Dr Zahed Lambat, Prof Nalini Pather, Prof Jason Pole, Prof Clair Sullivan

Prof. Angus Turner

- 30% of First Nations population with diabetes
- Diabetes complication blinding disease
- Currently 20% of remote communities receiving eye checks
- 98% of diabetes associated blindness is preventable with eye checks

AI retinal scanner wins Lions Eye \$5m to diagnose blindness in Pilbara

We've made it easier to find the stories that matter to you with a new homepage, personalised sections and more.

By Alex Govan

ABC Pilbara

Fri 11 Oct

https://www.abc.net.au/news/2024-10-11/artificial-intelligence-powered-eye-scannerpilbara/104451718?utm campaign=abc news web&utm content=link&utm medium =content shared&utm source=abc news web

Methods

PRISMA guidelines

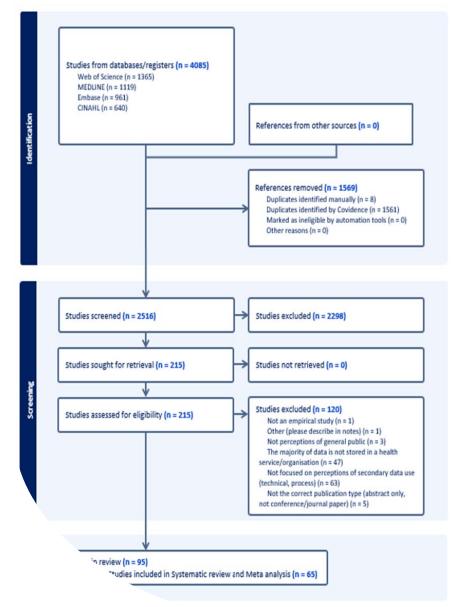
Databases:

Web of Science, Embase, CINAHL and Medline (Ovid)

Inclusions:

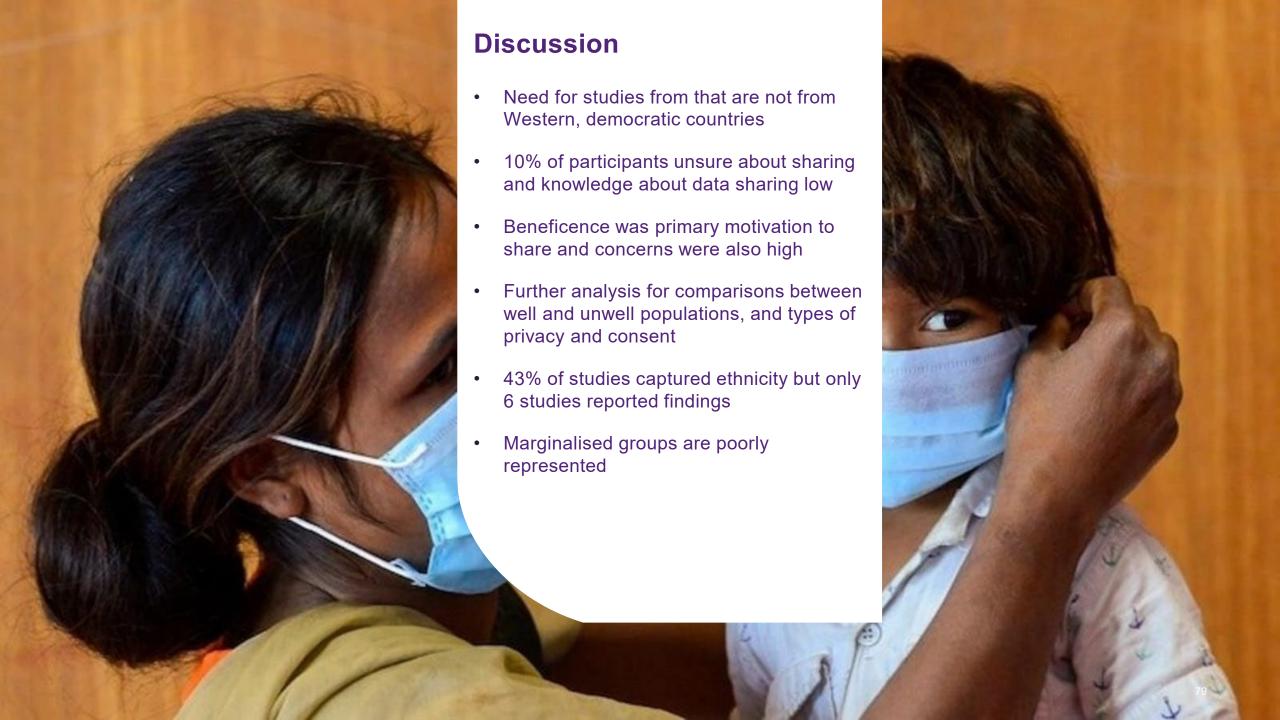
- Primary research articles with all study designs
- Perceptions of data sharing or acceptance
- Data in a healthcare setting with a data custodian
- General public, not healthcare professionals
- Articles from Jan 2020 to Jan 2024

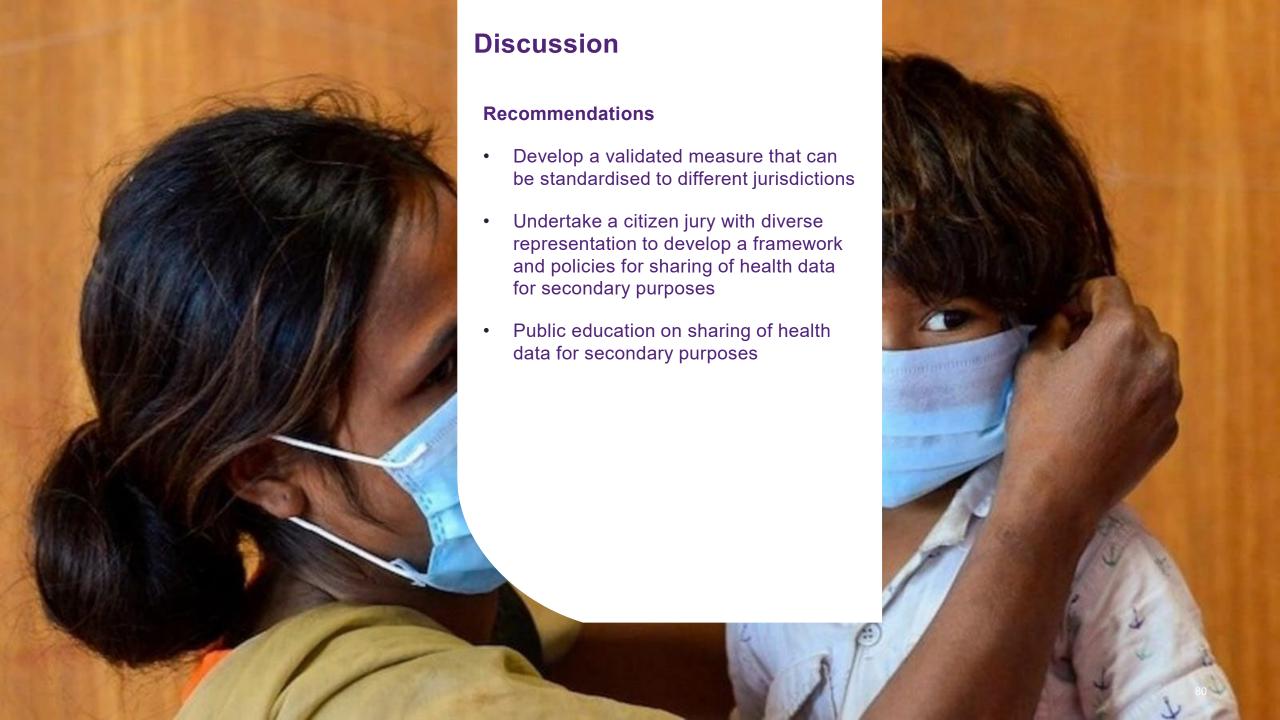
Exclusions:


- Grey literature, theses, conference abstracts or posters
- Articles not in English, full text or peer reviewed

Results

- 95 studies
- 65 quantitative extraction
- 51 meta-analysis for willingness to share




Results

- 95 studies
- 65 quantitative extraction
- 51 meta-analysis for willingness to share
- 34 countries, 95% high income, 51% from USA, UK and Australia, all cross sectional
- Willingness to share 76.59% (95% CI: 71% to 82%)
- Heterogeneity ($\tau^2 = 1.3$, I2 = 99.7%, p<0.001)
- Type of health data
- Willingness to share 76.59% (95% CI: 71% to 82%)
- Heterogeneity ($\tau^2 = 1.3$, I2 = 99.7%, p<0.001)

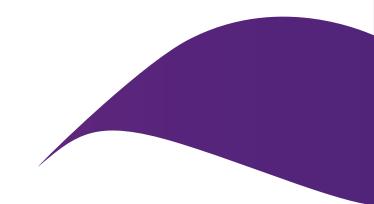
Study	Events	Total		Proportion	95%-CI
Aggarwal 2021	268	408		0.66	[0.61; 0.70]
Al-Shami 2023	441	1003	-	0.44	[0.41; 0.47]
Amorim 2022 Patients	336	478	-	0.70	[0.66; 0.74]
Amorim 2022 Carers	325	478	*	0.68	[0.64; 0.72]
Atkin 2021	261	308	: =	0.85	
Bakken 2022	190	253	-		[0.69; 0.80]
Belfrage 2021	1578	1645			[0.95; 0.97]
Bouras 2020	224	622		0.36	
Braunack-Mayer 2021	1466	2537			[0.56; 0.60]
Corman 2022	213	317			[0.62; 0.72]
Dobson 2021	1157	1377		0.84	
Eikemo 2022	423	424			[0.99; 1.00]
Etchegary 2023	64	85	-		[0.65; 0.84]
Franklin 2020	481	677	_ =	0.71	
Fylan 2021	247	1031	== = :		[0.21; 0.27]
Garett 2022	93	161			[0.50; 0.65]
Gonzalez-Prieto 2023	188	226	· · · · · · · · · · · · · · · · · · ·		[0.78; 0.88]
Gupta 2023	3461 115	3539 120			[0.97; 0.98]
Hammack-Aviran 2020	127	132			[0.91; 0.99]
Hutchings 2023	637	678	: 3		[0.91; 0.99]
Jagsi 2023 Jones 2022	23888	29275	100		[0.92; 0.96] [0.81; 0.82]
	43	104		0.41	
Jung 2020 Jung 2023	899	1370	275		[0.63; 0.68]
Kallesoe 2023	3970	4981	100		[0.79; 0.81]
Khatatbeh 2022	696	1194	275		[0.55; 0.61]
Kirkham 2022	2028	2187			[0.92; 0.94]
Kongeter 2022	516	820		0.63	
Lysaght 2021	639	1000	:		[0.61; 0.67]
McCormick 2022	892	1407			[0.61; 0.66]
Middleton 2020	17663	36268			[0.48; 0.49]
Muller 2022	854	987	- : =		[0.84; 0.89]
Muller 2023	848	902	101	0.94	
Ong 2023	348	400	-	0.87	
Parobek 2022	100	160		0.62	[0.55; 0.70]
Parvienen 2023	194	299			[0.59; 0.70]
Pletscher 2022	874	1231		0.71	[0.68; 0.74]
Raddatz 2023	173	253		0.68	[0.62; 0.74]
Richter 2021	400	508			[0.75; 0.82]
Richter 2022 German	793	1006	: 03		[0.76; 0.81]
Richter 2022 Dutch	4853	5258			[0.92; 0.93]
Schultz-Swarthfigure 2022	79	103	- III	0.77	
Shi 2023	770	2060			[0.35; 0.40]
Silber 2023	641	1006	=: <u>1</u>		[0.61; 0.67]
Soellner 2022	158	204		0.77	
Summers 2022	3044	4764			[0.63; 0.65]
Tosoni 2021	175	222			[0.73; 0.84]
Tosoni 2022	165	183	<u> </u>	0.90	
fully 2020 Scotland	982	1465			[0.65; 0.69]
illy 2020 Sweden	974	1487			[0.63; 0.68]
hol 2023 en 2020	497 1373	1003 1494		0.50	
an 2020	13/3	243	1	0.92	[0.90; 0.93]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	254	302	T_	0.77	
ጎ 2021	1140	1357	1		[0.82; 0.86]
	1140		lad		
* model		122002	I 1		[0.68; 0.69]
odel			◆	0.77	[0.71; 0.82]
3	4.0700			1	[0.26; 0.97]
-	1.2722, /	0 = 0			

Thank you

Quita Olsen

PhD Candidate – Queensland Digital Health Centre, The University of Queensland q.olsen@uq.edu.au

CRICOS 00025B • TEQSA PRV12080


The Impact of Digital Hospitals on Patients: A Secondary Analysis of Patient Reported Experience Measures

Teyl Engstrom, PhD candidate

Clair Sullivan, Jacqueline Daly, Shirle Thompson, Jason Pole

Note: This section has been intentionally omitted

Teyl Engstrom

PhD Candidate – Queensland Digital Health Centre, The University of Queensland t.engstrom@uq.edu.au

The Impact of Electronic Medical Records on Maternal Healthcare: A Scoping Review

Titus Kirwa, PhD candidate

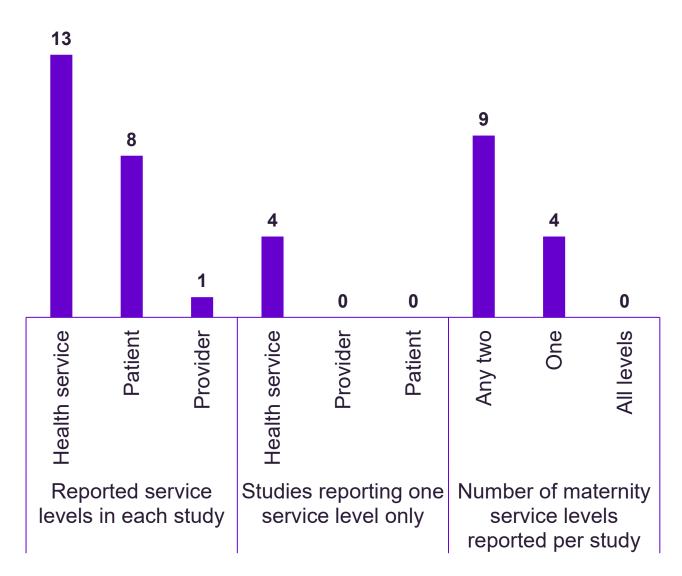
Dr Elton Lobo, Teyl Engstrom, Terence Felix,
Abhinand Vasudevan, Nicole McDonald, Lindsey
Butler, Steven McPhail, Dr Natasha Reid, Dr
Lyle Turner, Prof Jason Ferris, Prof Clair Sullivan

Introduction

❖ \$181.9 million benefits related to patient quality and safety, operational service improvement and direct financial savings were realized at the Princess Alexandra, Mackay Base, Cairns, Townsville and Queensland Children's Hospitals (PWC, 2018).

Research question

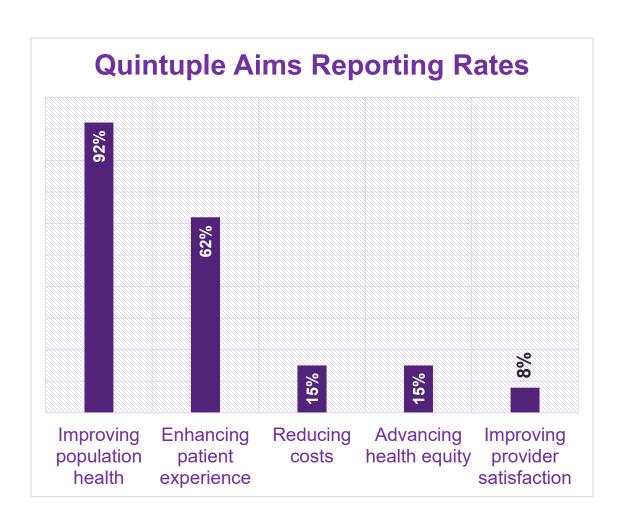
What are the enablers and barriers to the implementation of maternal digital workflows and what are the outcomes of implementation?


Methods

Scoping Review mapped to Quintuple & RE-AIM framework

Results (RE-AIM Framework)

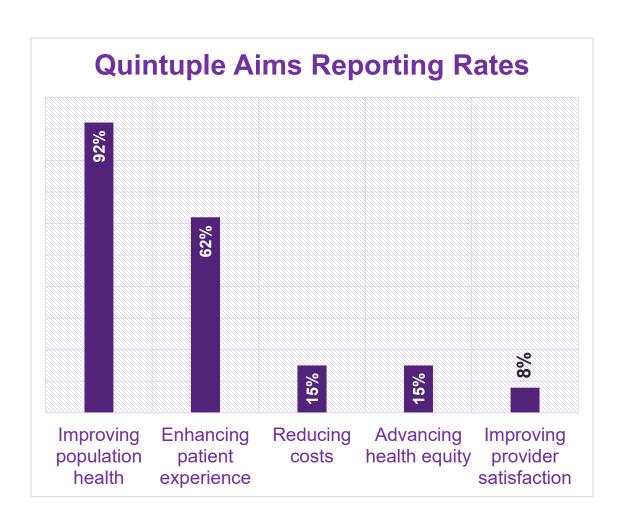
Percentage of studies reporting Effectiveness dimensions of RE-AIM per levels of maternity service delivery


Effectiveness Outcomes

- High effectiveness in enhancing health service level outcomes across all studies reporting this level 11 (84.6%).
- ❖ 8 (61.5%) reported high efficacy in enhancing patient outcomes.
- Only one study assessed provider experience and reported positive outcomes.

Results (Quintuple Aims)

Impacts of EMRs on Quintuple Aims Outcomes


Less consistently evaluated

- Cost-effectiveness
- Provider satisfaction
- Health equity

Results (Quintuple Aims)

Impacts of EMRs on Quintuple Aims Outcomes

Less consistently evaluated

- Cost-effectiveness
- Provider satisfaction
- Health equity

Titus Kirwa

PhD Candidate – Queensland Digital Health Centre, The University of Queensland t.kirwa@uq.edu.au

Digital Health Interventions To Prevent Type 2 Diabetes: A Systematic Review

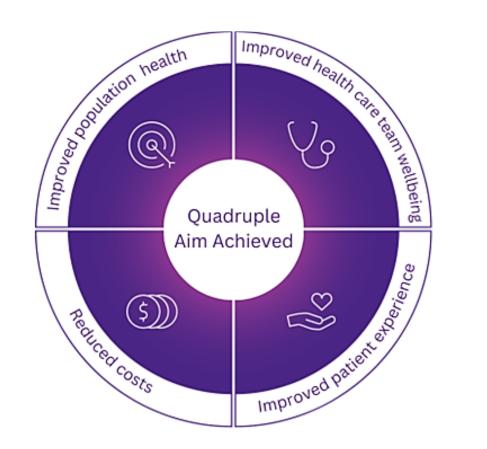
Tuan Duong, MD, PhD candidate

MSc Quita Olsen, Dr Anish Menon Dr Leanna Woods, Jaze Wang Lee Jiang, Dr Marlien Varnfield Prof Clair Sullivan

Introduction

Prevent type 2 diabetes – cost effective

Evidence digital interventions are effective in type 2 diabetes prevention



Quadruple Aims in healthcare

Help guide digital health in prevention, treatment, delivery, planning, decisionmaking

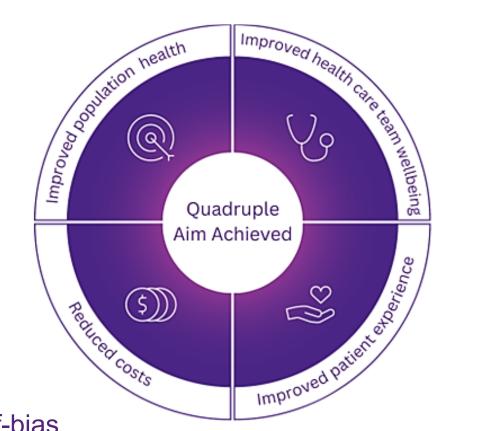
The impacts of digital interventions on the Quadruple Aims in type 2 diabetes prevention remain largely unknown

Objectives

To systematically review the effectiveness of digital interventions in type 2 diabetes prevention as measured by the Quadruple Aims

Methods

Conducted and reported following PRISMA 2020


Quantitative and qualitative data collected and synthesized narratively

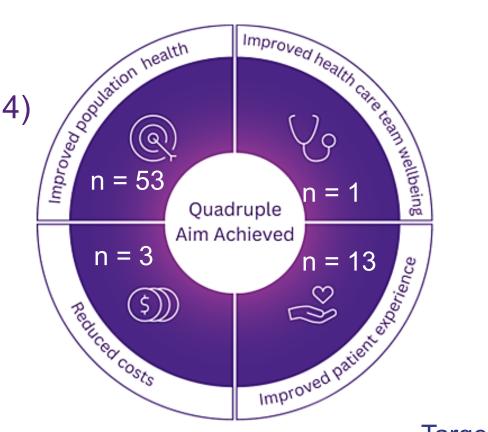
Outcomes mapped to the Quadruple Aims

World's Health Organization Digital health interventions classification

Digital health intervention effects: Positive (+), Negative (-), Neutral (0)

Quality assessment: Version 2 of "Cochrane risk-of-bias tool for randomized trials", "Risk of Bias In Non-randomised Studies - of Interventions"

Results


T2DM development (n =14)

One study positive effect Nine studies neutral effects NA n=4

Dysglycemia (n = 53)

23 studies positive effect 24 studies neutral effect NA n=6

Different digital interventions in combination

Targeted communication,
Telemedicine,
Personal health tracking

Conclusions

- Limited evidence supporting the effectiveness of digital interventions in preventing T2DM, clear evidence their effectiveness in improving dysglycemia
- Lack of studies on healthcare provider experience and healthcare cost
- Digital interventions should be integrated with healthcare provider interaction
- Different digital interventions in combination work best
- Combination transmission of information, alert, reminder, telemedicine, tracking device

Tuan Duong

PhD Candidate – Queensland Digital Health Centre, The University of Queensland tuan.duong@uq.edu.au

Please join us for networking!

